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1. Introduction.

A large literature has been devoted to studying the asymptotic properties of the linear
stochastic system

(1.1) X! =AX,+eBX,F(&)., Xo=z€R?

where A, B are constant d x d matrices and F (&) is a mean-zero function of an ergodic
Markov process on a compact state space M. Of particular interest is the top Lyapunov
exponent

(1.2) Ae) = lim ™ log X4

and the rotation number. suitably defined in case d = 2. To analyze this system it is noted
that the joint process (X,.£;) is Markovian on the product space R? x M with infinitesimal
generator

(1.3) L=ILx=G+AX -V +eBX-V)F(¢)

Here G is the generator of the noise (£;); the second term is a “systematic derivative.”
making no reference to the noise process. The third term mixes the noise and state
variables, inviting the term “noisy derivative” and is the source of the analytical challenge.
This model is referred to as a “real-noise driven system.”

It is well known that the noise process obeys a central limit theorem in the form

1/€2
(1.4) 6 F(&)ds = N(0.0%) (610)
0

a normal law with mean zero and variance o?t, where the variance parameter o? =

—~2(G™'F,F) and the inner product is computed in terms of the invariant measure of
the process (£;). Therefore one may attempt to analyze the asymptotics of (X,.£;) by
studying a related system driven by white noise

(1.5) dY; = AYidt + ¢BY; o duy

where (w;) is a Wiener process with mean zero and variance o?t. The diffusion process
(Y;) is Markovian on R? and has infinitesimal generator

(1.6) Ly =AY -V + %52(3}' At

One may conjecture that the asymptotic behavior of the Lyapunov exponent for the real-
noise driven process (X) is equivalent to that for the diffusion process (17). at least to
the first approximation. It is our purpose to carry out the details of this plan in cases of
interest.
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2. Nilpotent Systems.

In a previous paper [5] we investigated the Lyapunov exponent for white noise systems
with a nilpotent deterministic part: 4% = 0, A%~! non-zero and B generic. This includes
the free particle perturbed by multiplicative white noise as well as other models of physical
interest. Recently these results were extended to systems driven by “telegraphic noise.”
where M = {-1,1}, by Arnold and Kloeden [7]. Now we can show that these results can
be extended to the general real-noise driven system. We have the following theorem.

THEOREM 2.1. Let A¢), r(¢) be the Lyapunov exponent and rotation number of the 2 x 2
system X; = [A + e BF(£;)) X where A? =0, A non-zero and (&) is a finite-state ergodic
Markov process. Suppose that (Bet,e) > 0 where Ae = 0, e non-zero, (e,et) = 0. When
€ | 0 we have

(2.1) Me)~ Cre®? r(e) ~ Cpe?f?

for positive constants Cy, Cy. These expansions are precisely the same as for the Lyapunov
exponent and rotation number of the associated diffusion process (7).

We compute the Lyapunov exponent by the “adjoint method.” This consists in writing
the generator in terms of a system of polar coordinates (p, ) and setting Q(£,¢) = L(p).
The angular process (£, ) is ergodic with stationary measure N(df x dp) and the usual
formula for the Lyapunov exponent is A(€) = [y, ga-1 @€, )N (d€ x dy). In the present
case, A(c) may be characterized as the unique number A for which there exists a function
f(#,§) solving the equation Lf = @ — A. Indeed. integrating both sides against N(df x
dy) shows that A = A(¢). Since this equation may be difficult to solve exactly, we may
obtain asymptotic approximations by replacing L by a suitable approximate generator. or
equivalently to find a function f, and a number A, such that Lf, = Q — . + O(R,) for
a suitable remainder term R,. Integrating this equation against N(df x dyp) produces the
asymptotic statement A, = A(e) + O(R,). It remains to find the approximations f. A,.
R..

To do this we apply a method of “homogenization.” We write the noisy part of the
generator in the form G + éV and show that this is approximated by a diffusion operator
in the following sense: there exists a second order operator L, : C*(R?) — C*®(R?) and
operators L, : C®(R?) — C®(R? x M) (i = 1,2) such that for each f € C>*(R?) we have

(2.2) (G+ VY f+SLif+8Lof)=6Lof)+0(8%)  610)
This allows us to reduce to the case of a white-noise drive system for which we know

the asymptotics of the Lyapunov exponent and rotation number. The details appear in
sections 4 and 5.




3. The Harmonic Oscillator.

We now compare the small-noise behavior of the stochastic harmonic oscillator for
the cases of real noise and white noise. The real noise system is defined by X; = AX,dt +

eBX,F(&) where A = (_07 (1)) and B = (‘1) g) with v > 0. We assume specifically

that (&) is a finite-state Markov process with self-adjoint generator (reversible case) and
invariant measure v(df). We take a system of polar coordinates (p.p) with z,,/7 =
e? cosy, T2 = e?sin. The stochastic equations take the form

r = =V + e[F(£0) /7] cos’ o

3.1
@ Pt = €[F (&) /) sin ¢ cos

The infinitesimal generator of the joint motion of (&, ¢s. py) is

Lx=G- \/'—yc,% +e[F(€) /) (cos2 395% + sim;;cosc;aip) .
The white noise system is defined by the Stratonovich equation
(3.2) dY; = AY,dt + ¢BY,; o du,
where wy is a Wiener process with mean zero and variance o2¢. Its generator is given by
Ly = —\/'7'5% + -;— e20%(cos? go-a-% + sin ¢ cos v%f

where we make the identification 02 = —2(G~!F, F).

To obtain the asymptotic form of the Lyapunov exponent of the real-noise driven
system we look for an approximate solution (f,A) of the equation Lx f = Q — A where
Q(&,¢) = Lp = €[F(€)/ /7] sinp cos p. This is sought in the form

f=fotefi+e*f

3.3
( ) A=/\0+6/\1+€2/\2

leading to the conditions
(G- Vig)fo=0
Oy 0
0 ) .
(G- \/’75;)1"1 + [F(€)//A)cos® o fy = IF(£)//Alsing cosys — A
0
(G- \/’7'3—5)f2 +[F(6)/ /) cos? pfy = —A,.
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This leads to fo =0, Ay = 0. f =(G — --)"’F(E) sin  cos ¢ /,/7 which may be solved in
terms of eigenfunctions 1 where Gy = —-pkwk fork=1..... N with¢; =1, gy =0 and
pr >0 for k > 1 by writing £(£)singcosp = 3 Ek>] (F. ¥x )¢k sin 2, leading to

fr= (1/\/_)2 [ pisin 2 + \/‘7‘3052»9] (Fodehin/ (1} + 47).

k>1

Averaging he * equation with respect to the normalized measure dpv(df) and integrating
by parts lea's tu

o= (1/V3) / F(€) cos? o fdpu(de)
= —(2/\/'7)/F(é)sin'yﬂcos¢f1d¢u(d§).

From the above spectral representations. we can compute the inner product of f; and
Fsin2p to obtain

[ F@sing cos pdotde) = 3 mdF et (s 20) /44 + 49)

k>1
with the result ({4}, [6])

(3.4) Al = (1/47) Y el Foe)? /(uf + 47,

k>1

To obtain the asymptotic form of the Lyapunov exponent of the white-noise driven
system we look for an approximate solution (f,A) of the equation Ly f = Q@ — A where
Q(€,¢) = Ly p = (¢2/27) cos® ¢ cos 2. This is sought in the form

f=fot+efa
A= /\0 + 52,\2

leading to the conditions
ik =0
Vif s a(cowa ) fo = (02 /27) cos? p cos 2 — Xy

leading to the choices fo = 0 and the well known result (replacing dy by dy/27)

"
)‘\;hne = (02/27 )(2-,7)_1 / (:OS2 @ COS 2$d¢

(3.5) ‘ .
= (02/87).
If we make the identification 02 = —2(G~!F, F), then this may be written as
(3.6) A3 = (1/49) )_(Fou) [
k>1

These computations are summarized as

(1)



PROPOSITION 3.1. We always have the inequality A < Ayhite,

To resolve this aptparent discrepancy, it suffices to consider a parametrized family of
real-noise processes fo 67 F(£,6-2)ds. When 6 | 0 these converge to a Wiener proress
with mean zero and variance 02 = —2(G~!F, F). The stochastic equation has the form

X = AX +¢€[67 F(£5-2)|BX,
with infinitesimal generator
Lx =AX -V+62G+e67'F(£)BX - V.

To obtain the corresponding form of the Lyapunov e.-ponent, it suffices to substitute above.
with px replaced by 462 and F replaced by F6~1. Thus

NER(8) = (1747678 Y (k7 2)(F, i) /[(1a6™2) + 4]
k>1

= (1/4) ) el Fon)? i} + 496%).
k>1

When é | 0 we have

PROPOSITION 3.2, ‘Gxixox Areal(g) = (1/4,,)2(1:-’#,,:)2/”& = Aphite,
k>1
Thus we retrieve the white noise result in the CLT limit.

4. Proof of Theorem 2.1 (special case).

We are given an ergodic Markov process {£(t)}:>0 on & compact state space M: the
infinitesimal generator is denoted G and the invariant measurs v—thus G*v = 0 and
G1 = 0. We further assume that the Fredholm alternative is satisfied for the simple
eigenvalue zero, i.e.. the inhomogeneous equation Gf = g has a solution provided that
fM g(&)v(d€) = 0; the solution is uniquely determined by requiring [ a f(E)v(dE) = 0.
This condition is satisfied for a finite-state Markov process or for Brownian motion on a
compacc manifold, for exainple.

Let there be given a function F(€) with mean value zero, i.e., [;, F(€)v(df) = 0. Let
(z(t).2'(t)Y = (z1(t), z2(t)) be the solution of the second-order system z''(t) = ex(2)F(£(t))
with the initial conditions z(0) = 1, 2/(0) = z,. This is a Markov process on the product
space R? x M with the infinitesimal generator

3} 0
(41) L=G+.’I'25;1'+€F(E)I‘;E‘;.,

The top Lyapunov exponent is defined by

(4.2) et = }ilxg)ct'l log \/z1(t)? + 74(t)2.
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This is invariant under linear change of coordinates in (),z) space, n particular the
scaling transformation (z1,2) — (21, Czs).
We introduce a system of “polar coordinates” by

(4.3) r; =ePcosp, z2=Celsing.

We make the identification z(t) = z;(t), 2'(t) = z2(t) and consider the joint process
(£(t), p(t),¢(t))em0. After a short calculation we find that

(44 ¢'(t) = —C'sin® p(t) + (¢/C) cos® p(t)F(€(1))
4) p'(t) = Csin p(t) cos p(t) + (€/C) sin p(t) cos p(t) F(£(1)).

The joint process (£(t),(t), p(t))1>0 is a Markov process on the space M x R x R with
the infinitesimal generator

0 o}
L=G+EF(£)II_6-}—2-+IZ_1_

(4.5) =G + (~Csin’ ¢ + (¢/C) cos? vF(E))%
¥

+ sinpcos p(C + (E/C)F(f))aip

!in fact the first two components already form a Markov process, but we shall need the
full generator in what follows).
We write the geneiator in the form L = G + 6V + D, where

r e A i 6 2 a
V = F(§) (smy-osy—-—ap + cos ('969:)
D= Csing,.ccos&,a-‘z — C'sin? <p2

Op Oy

and § = €/C. We refer to G as the nose generator, V as the noisy derivatives and D as
the systematic derivatives. We also note, for further reference, the function Q(y,§) defined
as Lp(p,£) is computed as

(4.6) Q(p,£) = Csing + (¢/C)F(§)siny cos .

In previous approaches to stochastic Lyapunov stability, one solves approximately the
equation Lf = Q — A for suitable f = f(¢,€) and A € R. In the present case this is
not directly possible, because of the presence of the noise variables F'(£) which intervene
both in the generator and in Q(y.€). Therefore we apply a process of “homogenization”
to replace the operator G + 1" by a suitable diffusion cperator in the (¢,p) space and
ultimately replace Q(¢.€) by a function Q(y) related to a suitabie diffusion process.

7




PROPOSITION 4.1. There exists a second-order differential operator Lg in the (. p) vari-
ables with the following property: for any f € C*®(R x R) there exist correctors f, €
C>®(R x R x M) (i = 1,2) such that

[G+68VI(f+6f + 6%f3)
(4.7) =: [G + (51"'(§)(cos2 tp% + sin ¢ cos p%)] (f +6f1 +6%f)
= 6(Lof)(w,0)+0O(8%)  (610)
where L, f(p,p) = %02 (sia:pcoscp% +cos<pa—‘1;>2f and 02 = -2(G"1F.F) > 0. The

term O{6%) is estimated in terms of the C3 norm of f.

PRrROOF: We choose the coriectors in order to cancel the term of order é and to render the
coefficient of 62 independent of £. This requires that we have the equations

of . of
2 9] or _
(4.8) G f, — cos c,,F(f)ap sin ¢ cos 9 F(£) 3
2 on . ofy :
(4.9) G f; — cos ('QF(GF — sin ¢ cos c,oF(é)Fp— = function of (¢, p).
Y

The first of these is satisfied by taking
fi=-H(§) [cos2 <p~aa—£- + sin ¢ cos @Z—lf)}

where H(£) is the solution of GH = —F, normalized so that [,, H a H(§)r(dE) = 0. With this
choice of f; we substitute in the equation (4.9) for f; and average with respect to v(df).
The G f, term drops out and the right side of the equation is found to be

(4.10) -;-02 (cos gog—&-sxmpcossoaa ) f=:L,f
where 02 = 2 [, F(§)H{&)v(df).

Finally f, 1s determined by solving the indicated equation (4.9) subject to the nor-
malization |, am f2(E 0, p)v(dE) = 0. This is possible, since Gf; has been arranged to be
perpendicular to the null space of G*, completing the proof.

If E/ C | 0 we may restnct attention to the “approximate generator” (¢/C)?L,f —
Csin? p 2 a +C sm«,ocossg . In order for the terms to balance we are led to the equation

(/CP¥=CorC=¢*as we had in the diffusion case [5]. More precisely. we consider the
white noise system dz = z,dt, dr, = €r; o dw where {w(t) : t > 0} is a Wiener process
with mean zero and variance parameter g%t. For this system the infinitesimal generator

. 2
is L, = 1,5 6: + 52"2 (:1:15‘2—2-) . if we take the polar coordinate system z, = €” cos.
z2 = Ce’sin ¢, we obtain the angular equation

(4.11) dp = —Csingcosp + (0¢/C)? cos? ¢ o duw

8




with the @ function (Q. = L.p)
(4.12) Q.(¢) = —Csingcos¢ + (0e/C)? cos® ¢ cos 2.

From our previous work [5], we know that if we choose C = ¢%/3, then L, = €2/3L,,
where L; is hypoelliptic with invariant measure y and the Lyapunov exponent is A\, =

J7 . Qi(p)u(dp) > 0.

In order to find the Lyapunov exponent of the real-noise driven system, it suffices to
find f(p,£) and A~ such that Lf(e,€) = Q(¢,£) — A~ + O(e). To do this, we proceed in
three steps.

Step 1. Let pi(p,£), p2(w, &) be the correctors such that -
(4.13) (G +6V)(p+bp1 +6%p2) = 6%Lop + O(6°)

In our previous paper [5] we showed that the cperator — sin® 4,95— + Ly on [—m, 7] has
an invariant measure p and satlsﬁes the Fredholm alternative for the simple eigenvalue
zero and that A\; =: [7_Q()p(dy) > 0, where Q(p) =: sinpcosp + L,p = sinpcosy +
o2 cos? pcos 2y,

Step 2. Let h = h(¢) be the solution of the equation
(4.14) /— sin? cp—g— + L, ) h=Q(y) -
\ dp

normalized so that ["_h(g)u(dy) =0

Step 3. Let hy(,£), ha(p,€) be the correctors defined above for the function A, ie..
(G + 6V)(h + 6hy + 62hy) = 62L,h + O(83).

PROPOSITION 4.2. With the above notations, we let

(4.15) f(@,€) = h(g) + é(h1 = p1 )9, €) + 6%(hy — p2) (0, €)
where 6§ = ¢/C, C = €?/3, Then Lf(¢,£) = Q(p,€) — €230, + O(¢) in particular the
Lyapunov exponent A(e) = €%/3); 4+ O(¢), ¢ | 0.
PROOF: Recall that L = G+ 6V + D where G is the noise generator, V contains the noisy
derivatives and D contains the systematic derivatives. From step 1, we have
(G+6V)(p+6p1 + 6%py) = 6%0% cos? pcos 2p + O(e)
L(p + 6p, + 8%p3) = Csingcos g + 6202 cos?  cos 29 + O(e)
= 2PQ(9) + O(¢)

(G + 6V)(h + 6hy + 6%hy) = 62 L,k + O(¢)
L(h + 6h; + 8%hy) = ~Csin® ¢ B'(@) + 62Loh + O(¢)
=e2*(Q(p) = M) + O(e).

9




Subtracting these two gives
L(h— p+6(h1 — 1) + 6 (hz - p2)) = —€*/* A1 + O(e).

Adding Q(¢,&) = Lp to both sides gives the desired result. To complete the proof. we
may argue directly in terms of martingales: wntxng the above equation as Lf = —2/3); +

O(e), we have that M, =: f(p(t),o(t),&(t)) = fo Lf(p(s),p(s),€(s)ds is a martingale.
But M, = o(t) when t T oo; therefore we may divide by t and take the limit obtaining

limegoo p(t)/t = —A1€2/% + O(e). We have the following theorem.
THEOREM 2.1(A). The top Lyapunov exponent satisfies

Me) = }iTgt‘lp(t) = e2/3(sin  cos p + 62 cos®  cos 20)u + O(¢) (e 10).

By the same method we can compute the rotation number, defined as
r(€) = lim¢joo t71¢(t). To do this we verify the following:

PROPOSITION 4.3. Let k() be the solution of
—sin® k'(p) + Lok = Loy — sin® o — (Lop)u + (sin2 @) a-

Let kqi(p), k2(yp) be the correctors defined above for f = ¢ + k(). Then L{¢ + k(p) +
e/3ky(p) + €23k () = €2/3(Lop + sin’ p) u + O(e).

Noting that k() and the correctors ¢y, @2, ky, ko are periodic functions we have the
following result:

THEOREM 2.1(B). The rotation number is computed as

r(e) = Hﬁ o(t)/t = e¥¥(sinpcosp + a?sin’ ), + Oe) (¢ 1 0).

5. Proof of Theorem 2.1 (general case).

We now generalize the set-up of the previous section to the stochastic system
(5.1) 2'() = [A+ eF(£(t) Bla(t)

where z(t) = (7;(),z2(t)) and A # 0 is a 2 x 2 matrix with 42 = 0. Without loss of

0 1) so that the system has the form

generality we may take a basis in which 4 = ( 0 0

z1(t) = 2a(t) + e F(E(1))(br1 () + bi2za(2))
z5(t) = eF(£(1))(barx1(t) + ba2z2(2)).

10




Taking a system of polar coordinates z; = e cos, 72 = Ce”siny we find that

¢ = —Csin® ¢ — esinp(by; cos @ + by2C sin @) F(£)
+ (e/C) cos @(b21 cos  + bpaC sin ) F(§)

p' = Csinycosy + € cos (b cos @ + b12C sin ) F(£)
+ (€/C)sin p(ba1 cos ¢ + a2 C'sinp(F(£).

Making the choice C = ¢%/3, the generator has the form

. 0 : 0
_ 232 0 kA
L € {sm (pa‘p-}-smc,,cosgpap}
+G+ePV, + eV + 57,
where
2 . 0 ) 0
Vi = by cos” ¢ F(€) 7= + bar F(§) sinp cos p—
Oy Op
. 0 . 0
Vo = (bgg — bu)sm‘cpcosch({)-a-; + (b, cos? @ + byy sin? cp)F(E)E;
Vi = —byo sin® (,9% + by sin(pcosgoga;..

This has the same structure as in the case of white noise. If the coefficient by, is non-zero.
we may apply the homogenization procedure described above to obtain the approximate
generator as

€302 Lo f —?/® {sin2 <pb% + sinc,ocosapaip} + O(¢).

ApL.ying the adjoint method we again obtain the result in the form as stated in Theorem
2.1.
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